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Reconstruction of early Neoproterozoic Rodinia supercontinent and the possible site of origin of
oceanic assemblages of the eventual Arabian-Nubian shield (part of the East African orogen)
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Seismic-refraction crustal model of Mooney and others (1985) for the southwestern part of the Arabian plate
showing a principal twofold division of the crust and rapid thinning of the crust beneath the coastal plain.
Alternative models for the entire section or part of the section given by Prodehl (1985), Milkereit and Fluh (1985),
and Badri (1991).  Seismic-refraction data reported by Healy and others (1982); compressional-wave velocities
in km/sec.  For location of profile and shot points, see main map.
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Section in central Saudi Arabia showing "Hercynian" structures in the Lower Paleozoic succession and basement
caused by pre-Unayzah Devonian extension.  The Lower Paleozoic strata are eroded over structural highs and
preserved in structural basins.  For location of section and bore holes see main map.
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INTRODUCTION
The study of tectonics deals with the broad architecture of the outer part of the Earth, and the age, relationship, and

evolution of regional structural, deformational, and crustal features.  This map shows selected tectonic elements of Saudi
Arabia and, in lesser detail, elements in adjacent parts of the Arabian Peninsula.  The map is modeled on the pioneering
publication by Brown (1972), but itself is a new map incorporating geologic and geophysical information and plate-tectonic
and terrane-agglomeration concepts acquired and developed since 1972, including those based on the author’s own field
work in the western part of Saudi Arabia.  It depicts tectonic relations that began to evolve in the Archean, but continue to
evolve because of ongoing deformational activity at the margins of, and within, the confines of the region shown.
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ARABIAN PLATE
Saudi Arabia is part of the Arabian plate, one of over ten rigid lithospheric plates that make up the surface of the

earth.  The Arabian plate came into existence 25-30 million years ago (25-30 Ma), when the rocks that comprise what is now
the Arabian Peninsula, Syria, Jordan, Iraq, and westernmost Iran began to separate from the African continent because of
rifting along the margin of northeast Africa and the opening up of the Red Sea and Gulf of Aden.  Although relatively young
as a tectonic unit, the plate incorporates rocks that have evolved over a considerable span of geologic history.  These rocks
range in age from the Archean to the most recent and make up a layer of continental crust as much as 45 km thick.  The
Precambrian rocks are extensively exposed in the southwest of the plate, and locally in the southeast, because of Mesozoic
and Cenozoic uplift.  Elsewhere the Precambrian rocks are concealed by a low-dipping sequence of Phanerozoic (Infracambrian-
Tertiary) deposits that, in the Arabian Gulf, for example, reach a thickness of more than 10 km.  The presence of Precambrian
basement, where concealed, is attested by the extension of magnetic anomalies from areas of exposure into areas of concealment,
by gravity data, by seismic surveys, and by widely scattered borehole intersections.

The Precambrian rocks contain most of Saudi Arabia’s known metal deposits, such as gold, silver, copper, zinc,
iron, and magnesium.  The Phanerozoic rocks contain the oil resources and deposits of bauxite (the source of aluminum),
phosphate, clay, limestone,  silica sand, light weight aggregate, and other mineral commodities that are of increasing importance
to the industrial development of the Kingdom.

Since its creation, the Arabian plate moved northeast away from Egypt and Sudan, north away from Somalia, and
rotated counterclockwise about a point in the vicinity of the Gulf of Suez.  Such movement is accommodated by compression
and strike-slip faulting along the Bitlis and Zagros zones, where the Arabian plate collides with and subducts beneath the
Eurasian plate, and by strike-slip displacement along the Dead Sea transform.  At the present time, the northern part of the
Arabian plate moves northwest, with respect to the Eurasian plate, at a rate of 20±3 mm/yr.  Because they are regions of
extension, the southern, south-western, and southeastern margins of the Arabian plate have weak to moderate earthquake
activity; the compressive northerly and northeasterly margins, conversely, are regions of strong earthquake activity.  Overall,
the plate has moved as much as 350 km away from Africa, depending on where the margins of the initial rift are placed with
respect to present-day exposure of Precambrian basement, depending on how much stretched continental crust is believed to
remain in the Red Sea basin, and depending on how much hybrid continental-oceanic and true oceanic crust is inferred
beneath the Red Sea shelves and axial trough.  Displacement along the Dead Sea transform separating the northeastern-most
part of the African plate from the Arabian plate and linking extension in the Red Sea with compression in the Bitlis zone, is
believed to be about 110 km.

A seismic-refraction survey in southwestern Saudi Arabia indicates that the Arabian-plate lithosphere broadly
consists of two layers, each about 20 km thick.  The MOHO, at the base of the lower layer separating the continental crust
from upper mantle is 40-45 km below the surface over most of the survey area, shallowing rapidly beneath the coastal plain
in the transition zone between continental and oceanic crust at the southeastern and southern margins of the plate.  The
uppermost layer is characterized by an average compressional-wave velocity of 6.3 km/s and probably consists of the types
of deformed Precambrian rocks exposed at the present-day surface together with vast amounts of granitic rock.  If the
structure of these deformed rocks resembles that of orogenic belts elsewhere in the world, the exposed Precambrian volcanic
and sedimentary rocks possibly extend only 5-15 km below the surface, bottoming in deeper intrusions or at subhorizontal
faults, and constituting roof pendants or thrust sheets.  The deeper layer has an average velocity of 7.0 km/s, suggesting that
it is mafic in composition, consistent with the composition of fragments of deep crustal material brought to the surface by
Cenozoic volcanic eruptions in several places in the western part of the Arabian plate.

PRECAMBRIAN BASEMENT
The southwestern outcropping Precambrian rocks constitute a region of exposed basement called the Arabian shield

(the term shield meaning an exposed area of crystalline, stable to moderately stable basement).  Most of the rocks are
between 870 and 550 million years old, although some contain material as much as 2000 million years old.  The older
material consists of zircon grains, eroded from even older continental crust and incorporated as detrital grains into younger
sedimentary and plutonic rocks, and rare intact old rock.  Terranes in Yemen locally contain 2300 Ma Archean gneiss.  The
Afif composite terrane in Saudi Arabia contains inherited zircons, possible intact Paleoproterozoic-Archean rock, and feldspar
and galena crystals that contain lead isotopes indicating derivation from an evolved continental source, types of data that all
suggest the terrane incorporates a continental microplate (now largely destroyed by later intrusion).

The 870-550 Ma rocks of the shield represent one of the best exposed and largest assemblages of Neoproterozoic
rocks in the world.  Following current ideas about the evolution of orogenic belts worldwide, these rocks are divided into
separate crustal units, or suspect terranes, believed to have distinct, unique geologic histories.  Many of the Neoproterozoic
rocks accumulated in oceanic environments as island arcs, ocean plateaux, and mid-ocean ridges.  Reconstructions of
Precambrian geography suggest that this ocean lay on the margins of Rodinia, the global supercontinent that existed during
the early Neoproterozoic.  Rodinia began to break up about 750 Ma, and rifted segments of the supercontinent reassembled
by the end of the Neoproterozoic forming a new supercontinent of Gondwana.  In this process, the basement rocks of Saudi
Arabia, together with those of northeast Africa and those along strike in the Mozambique belt, were caught between western
and eastern segments of Gondwana as the segments came together, forming a belt of folded, thrusted, and metamorphosed
agglomerated terranes and reworked older rocks (the East African orogen) sutured to Africa (on the west, in present-day
directions) and East Gondwana (on the east).  Toward the end of this process, additional volcanic and sedimentary rocks
were deposited in marine and continental environments, and a vast amount of plutonic rock was intruded into and beneath
the deformed volcanic and sedimentary rocks.  Sutures between the constituent terranes of the Arabian shield and its counterpart
in northeast Africa are marked by serpentinite-decorated faults, thrusts, and brittle-ductile shear zones.  These faults and
shear zones coincide with zones of significant changes in gravity, magnetic, structural, isotopic, and geochronologic
characteristics from one side to the other.  Free-board segments of the newly formed crust partly escaped collision during the
end Proterozoic and early Cambrian by displacement along transcurrent faults and by extension across normal faults.  These
faults have a range of ages and histories, but together represent a period of failed rifting or dismemberment of the newly
formed Arabian crust.  Neoproterozoic rocks crop out in Oman, and on the basis of their magnetic signature and rare bore-
hole intersections, appear to extend some distance from the margins of the shield beneath Phanerozoic cover.  The exact age
and provenance of the concealed basement rocks, however, are uncertain.

Summary

Tectonically, Saudi Arabia is part of the Arabian plate, one of over ten lithospheric plates that make up the Earth’s surface.  It consists of crystalline Precambrian basement overlain
by low-dipping Phanerozoic sedimentary and volcanic rocks, and originated 25-30 million years ago as a consequence of rifting along the line of the eventual Red Sea and Gulf of
Aden.  The plate moved north and collided with the Eurasian plate.  Prior to rifting, the rocks of Saudi Arabia were contiguous with those of Northeast Africa and the Horn of
Africa, and shared the geologic history of those regions.  Precambrian rocks that crop out in the western third of Saudi Arabia and in adjacent parts of Yemen and Jordan comprise
an area referred to as the Arabian shield.  Precambrian rocks also crop out locally in Oman and, on the basis of geophysical measurements, borehole intersections, and the character
of deep crustal material ejected from Cenozoic volcanoes are inferred to exist as crystalline basement beneath the Phanerozoic sedimentary rocks that occupy central and eastern
Arabia.

Judging from available isotopic ages, the basement is mainly Neoproterozoic (850-550 Ma), but locally older.  It consists of deformed and metamorphosed volcanic and
sedimentary rocks, which were deposited in volcanic arcs, sedimentary basins, half-grabens and other types of complex oceanic environments, and vast amount of granitic, dioritic
and other igneous rock.  These rocks were formed during a process of crustal accretion that, starting with juvenile oceanic crust and possible continental microplates, resulted in
the creation of new continental lithosphere about 40–45 km thick.  By the end of the Precambrian, this crustal layer, which is subdivided into an upper section of volcanic,
sedimentary, and igneous, mainly granitic, rocks, and a lower section of mainly mafic rocks, each about 20 km thick, was sutured between the cratons of West and East Gondwana.

The Phanerozoic geologic history of Saudi Arabia is marked by a moderate degree of tectonism in the Precambrian basement and the formation of a succession of arches,
basins, and fault blocks.  Coupled with the rise and fall of sea level in the flanking Tethys ocean and the epeirogenic effect of, often distant, plate movements, these structures
controlled sedimentation of the Phanerozoic rocks, resulting in the development of the unconformities, systematic sequence thickenings and thinning, and facies migrations that
characterize much of the Phanerozoic succession in Arabia.

Younger tectonic events in Saudi Arabia reflect Cenozoic rifting, plate movement, and associated geologic phenomena.  These include the eruption of large fields of flood
basalt in western Arabia, uplift of the basement areas flanking the rift zones, and the development of juvenile oceanic floor in the Red Sea and Gulf of Aden basins.  Collision with
Eurasia caused folding and thrusting in the Zagros and Bitlis zones along the northeastern and northern margins of the Arabian plate, and concurrent strike-slip faulting on the Dead
Sea transform caused the development of pull-apart basins and en echelon folds.
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PHANEROZOIC COVER
Despite being referred to, where exposed, as a shield, the crystalline basement of Saudi Arabia has not been

completely stable since the end of crust-forming events in the Precambrian.  It has been affected, in response to plate
movements during the ongoing history of Gondwana and other parts of the world, by strike-slip faulting and rifting,
forming grabens, and by uplift and subsidence, forming domes, basins, arches, and troughs.  The effects of such deformation
are considerable.  The crest of the Ha’il arch is about 4 km above the trough of the An Nafud basin; crystalline rocks in the
easternmost part of the Arabian plate are depressed beneath more than 10 km of sedimentary rocks; crystalline rocks in the
western part of the plate are elevated by as much as 3 km along the Red Sea escarpment; basement rocks are vertically
displaced as much as 3 km on buried faults beneath central Arabia; and the southeastern margin of the plate has been
overthust by slices of ocean floor.  The present-day Arabian shield is exposed because of uplift along the Ha’il arch and
Red Sea arch, and the shield is partly concealed, between the arches, by Lower Paleozoic and Upper Cretaceous-Paleogene
sedimentary rocks and Cenozoic volcanic rocks preserved in a north-south structural low.

The Infracambrian-Phanerozoic sedimentary history of Arabia began with the deposition, in grabens or pull-
apart basins formed by the end Proterozoic faulting mentioned above, of clastic rocks and later evaporites (Huqf and
Haima groups) in Oman and eastern Arabia and of clastic rocks, limestone, basalt, and rhyolite (Jibalah group) on the
exposed shield, and the formation of the Dokhan Volcanics and associated dike swarms in the Egyptian Eastern Desert.
The resulting large Infracambrian-Cambrian salt basins are a conspicuous feature of the eastern part of the Arabian plate
and structures formed by later halokinesis, locally in conjunction with basement horst blocks, make extremely valuable oil
traps.  The South Gulf basin contains piercements rimmed by Cretaceous-Tertiary synclines.  Farther north, the North Gulf
basin contains large pillows and swells.  The South Oman and Ghaba basins were affected by Lower Paleozoic halokinesis
and the Ghaba basin by renewed diapirism in the Mesozoic, particularly during the Late Cretaceous and Tertiary concurrent
with the second Alpine event in Eurasia.

During the Early Paleozoic, central Arabia was a stable subsiding passive margin flanking Gondwana.  Shallow-
marine, littoral, and fluvial sandstone, siltstone, and shale were deposited on the low-relief erosion surface formed on the
Precambrian basement at the end of the Neoproterozoic, a depositional cycle interrupted during the Late Ordovician-Early
Silurian by polar glaciation (Arabia at this time was within 30° of the South Pole).  Sea-level rise and fall caused regression
and transgression of the ocean flanking Gondwana and a corresponding migration of sedimentary facies on the stable
shelf.

Because of “Hercynian” orogenic activity that originated beyond the confines of Gondwana, the passive margin
of Gondwana in Arabia during the Devonian became active and central Arabia underwent uplift and tilting.  A regional
structural high that lacks Devonian sedimentary rocks marks the early development of the Central Arabian arch.  Earlier
deposits were depressed in fault basins or eroded across generally north-trending horst blocks resulting in an irregular
topography preserved beneath the Unayzah-Khuff unconformity and resulting in the initiation of structures that eventually
controlled the location of Paleozoic-hosted oil fields in central Arabia.  Unayzah Formation clastic rocks, which constitute
major oil reservoirs where they overlie appropriate Hercynian structures, mark a resumption of sedimentation in the Late
Carboniferous.  Deposition of the Khuff Formation, representing the earliest major carbonate unit in Arabia, followed,
concurrent with rifting and Gondwana breakup in the Zagros region.  Deep-water sedimentary(radiolarites) and tholeiitic/
alkaline volcanic rocks, now cropping out in the Hawasina thrust sheets in Oman, indicate the onset of Late Permian
ocean-crust formation in Neo-Tethys.  Structural highs developed in Oman as a possible effect of thermal-doming prior to
Gondwana breakup.  During this period, a second episode of glaciation deposited Permo-Carboniferous glaciogenic
clastic rocks in southwestern Ar Rub al Khali and in interior Oman

The Mesozoic geologic history of the Arabian plate is marked by the formation of structural highs and lows.  In
central Arabia, regional extension caused by continued breakup of Gondwana and rifting along the Zagros belt resulted in
the Triassic reactivation of Hercynian structures and synsedimentary thinning of Triassic deposits over growth faults.
Reactivated basement structures, shown in Saudi Arabia as N-S Mesozoic anticlinal highs, affected younger sedimentation,
particularly during the Late Cretaceous, causing anticlinal drape folds and helping to create the Mesozoic oil fields of
Saudi Arabia.  The reservoir rocks are Jurassic and Cretaceous, into which Jurassic hydrocarbons migrated during the
Tertiary.  The axial region of the Central Arabian arch underwent Middle Jurassic and Early Cretaceous inversion and
became a basin, followed by reformation of the arch during the Late Cretaceous as a consequence of uplift in southern
Arabia and continued subsidence to the north.  Similarly labeled Mesozoic anticlinal highs are important tectonic elements
in the Hadramaut region of Yemen and Oman; they trend E-W and reperesent broad arches that were initiated in the
Mesozoic, even possibly in the Paleozoic, and were active into the Tertiary.  Farther southeast, the precursor of the Gulf of
Aden, the proto-Owen basin, opened in the Jurassic, and tilting and uplift affected coastal Oman during the onset of
separation of India-Madagascar-Antarctica from Africa-Arabia and formation of the Masirah oceanic crust.  These oceanic
rocks were later obducted in the Masirah ophiolite zone.  During the Middle Cretaceous, concurrent with the opening of
the Atlantic, Neo-Tethys closed, and the African-Arabian and Eurasian plates converged.  The Semail ophiolite, created
by back-arc spreading at a subduction zone between the approaching plates, began to thrust over eastern Oman.  Obduction
of the ophiolite and loading of the Arabian plate caused an initial bulge and a later downwarp in the foreland in advance
of the thrust. The resulting Aruma trough (Fiqa foreland basin) flanked the southwestern margin of the Hawasina and
Semail thrust sheets.  The Semail ophiolite was in place by the Late Cretaceous at which time the southeastern coast of
Oman was affected by sinistral transpression

TERTIARY SPREADING, UPLIFT, AND VOLCANISM
The present-day boundary between the Arabian and African plates is a series of troughs 2,000-4,500 m deep along

the Red Sea, Gulf of Aden, and Gulf of Aqaba reflecting spreading along the Red Sea and Gulf of Aden and pull-apart
basins along the Dead Sea transform fault.  Seafloor spreading in the Red Sea began 5-6 m.y. ago, although an earlier
episode of spreading may have occurred 15-25 m.y. ago.  Intrusion of magma along the spreading axes created the oceanic
crust of the southern Red Sea and formed pools of metal-laden brine and hot springs in particular deeps.  The floor of the
northern Red Sea may be a mixture of rifted continental crust and newly formed oceanic crust.  Syn- and post-rift sedimentary
rocks, including evaporites, flank the spreading axis in the Red Sea and underlie the Red Sea coastal plain (Tihama).  In
most localities, the contact between Precambrian rocks of the shield and Cenozoic rocks of the Red Sea basin is faulted.
The Gulf of Aqaba pull-apart basins contain sedimentary rocks.  Ocean crust in the Gulf of Aden began to form 11 million
years ago (Middle Miocene) by westward propagation from the Carlsbad ridge in the Indian Ocean.  The ocean crust is
progressively younger toward to west, and is about 2 million years old where propagating west in Djibouti toward the Afar
hot spot.

Processes related to spreading caused uplift of the southwestern and southeastern margin of the Arabian plate
forming mountains in western Saudi Arabia and Hadramaut that crest at the erosional escarpment (2500-3300 m above sea
level) inland from the Red Sea and Gulf of Aden.  According to fission-track data, the Red Sea margin of southern Saudi
Arabia has undergone 2.5-4 km uplift in the last 13.8 million years.  East of the Red Sea escarpment and north of the
Hadramaut escarpment the land surface slopes to a broad plateau 900-1,000 m above sea level, and farther east slopes
gently to the Gulf.  End-Cretaceous-Tertiary events in the southeastern part of the Arabian plate include oblique obduction
of the Masirah ophiolite (Paleocene) onto the Arabian continent and rift-shoulder uplift and normal faulting of coastal
southern Oman and eastern Yemen.  This episode of uplift caused development of the Gulf of Aden collapse structures,
fractures parallel and oblique to the general trend of the gulf that deform the edge of the uplifted plateau and the southern
flanks of the Mesozoic Hadramaut arches.

Flood basalt erupted in western Arabia as a result of the spreading process forming large fields of subaerial
volcanic rock (harrats) that cover parts of the shield and some Phanerozoic sedimentary rocks.  The volcanic rocks are
mainly alkali-olivine basalt and form lava fields that were extruded from numerous vents and volcanic cones.  The northerly
alignment of cones and faults in the volcanic fields possibly reflects a northerly alignment of fractures in the underlying
crystalline basement along which magma rose from great depth.  The oldest flood basalts are in Yemen and southern Saudi
Arabia (30 Ma); the youngest are in parts of Harrat Rahat and Khaybar (erupted as recently as 700 years ago).
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