Applications of Geophysical Methods To Engineering Problems

Electrical Resistivity Imaging

Geophysical Methods Offer Means of Non-Destructive Testing (NDT)

- NDT methods can be utilized in a wide variety of settings with little or no impact on the structures being tested
- NDT can be applied to a variety of materials including:
 - **Earth: Soil and Rock**
 - Concrete
 - ≻Steel
 - **≻Wood**

Primary Methods

• Electrical Resistivity Imaging >2-Dimensional ➤ 3-Dimensional Ground Penetrating Radar SASW (Spectral Analysis of Surface Waves) **Earth Materials Concrete** MASW (Multi-channel Analysis of Surface Waves)

Crosshole Sonic Logging

Secondary Methods

- Electromagnetic Induction (EM, Terrain Conductivity)
- Seismic Refraction
- Microgravity
- Impact Echo

Electrical Resistivity

• The property of a material to inhibit or resist the flow of electric current

Popular Arrays

Schematic Diagram of Dipole-Dipole Array

Electrode attached to multiconductor cable

Resistivity Meter with Laptop Computer

2-Dimensional Array

Urban Environments

Shallow Data Acquisition

Deep Data Acquisition

Apparent Resistivity

Earth Model after Inversion

Irregular Bedrock Surface

Example: Excavation Profile

Example: Excavation Profile

Underestimation of Rock

Overestimation of Rock

Synthetic Resistivity Section Based on our Example

Underestimation of Rock with Limited Borings

Overestimation of Rock with Limited Borings

Comparison of True Soil Area vs. Area Interpreted from Resistivity

Karst Features/Voids

Air-Filled Voids: Abandoned Coal Mine

Resistivity and Ground Truth

Resistivity Along Strike

Landfill or Other Fill Materials

Contaminant Plumes

Relative Soil Moisture

Fault Zones

Lithologic Changes

Fracture Zones

Previous Conceptual Model of Piedmont and Blue Ridge Aquifers

(Heath 1984, LeGrand, 1967)

- Shallow water table aquifer in saprolite
- Downward vertical flow from shallow aquifer to fractures in deep bedrock
- Water storage primarily in saprolite
- Similar hydraulic conductivities in saprolite and bedrock fractures
- Recharge occurs over majority of land surface

Expected Results from Resistivity Profiles in a Crystalline Rock Terrane

- thin shallow low resistivity zone (blue-yellow) in regolith
- massive high resistivity zone (red-dark red) in bedrock

Unexpected Results from Resistivity Profiles in a Crystalline Rock Terrane

On the edge of the Blue Ridge Fault near Salem, Va.

Steeply Dipping Fault/Fracture Zones

Conceptual Model for Groundwater Flow in the Blue Ridge Province

3-Dimensional Resistivity

7

3-D Resistivity measures
in:
>X-Z Plane
>X-Y Plane
>Y-Z Plane

2-D Resistivity measures

in the X-Z plane

Two Possible Approaches

 Quasi 3-D: A series of 2-D resistivity sections collected in parallel lines; modeled using 3-D methods

Explicit 3-D: Electrodes placed in a grid pattern

3-D Results

Looking Northwest

Looking North

Looking West

Horizontal Depth Slice at 3.4 Feet

Horizontal Depth Slice at 7.4 Feet

Horizontal Depth Slice at 12 Feet

Summary of Resistivity Applications

- Bedrock mapping-more comprehensive than borings alone.
- Water Table Mapping
- Lithology Changes
- Subsurface Voids
- Fracture Zones in Rock
- Contaminant Plumes
- Fill Materials

Ground Penetrating Radar (GPR)

- Location of Buried drums or tanks
- Location of Buried Utilities
- Archeologicalforensic studies
- Delineation of Landfills and trenches

Principles

- Transmitter emits pulses of high-frequency radio waves.
- Waves are reflected off of subsurface objects and travel back to a receiver.
- The greater the contrast in electrical properties between materials the stronger the reflection.

Penetration vs. Resolution

- Frequency: Lower frequencies penetrate deeper but have lower resolution.
 - 200 MHz to 300 MHz will generally penetrate 6 to 12 feet- Buried utilities and Archaeological Studies
 - 1000 MHz will penetrate 1 to 2 feet- Concrete testing
- Electrical Conductivity of Material: Penetration is inversely proportional to the conductivity of the material.

GPR in Cross-Section

Horizontal distance (feet)

Archaeological Studies

Concrete Reinforcement and Utilities

Summary of GPR Applications

- Utility detection
- Underground storage tank detection
- Reinforcement in concrete
- Graves/Archaeological applications

SASW Applied to Earth Materials

 Stiffness/Velocity profiles: Meets IBC 2000 Section 1615.1.5.

More accurate and less conservative than pressure methods (N-value, triaxial tests, etc.)

Pressure Methods Under-Predict Stiffness

Laboratory tests from Grand Buildings, London

🕇 Undrained triaxial

(from Clayton et al., 1991)

Back analysis
from observed
movements around
excavations in the
London area

Hyde Park Barracks
 Commercial Union Building
 Britannic House
 House of Commons
 YMCA

Grand Buildings

North London

Guildford, Surrrey Chattenden, Kent

Seismic cross-hole surveys

(from Hope, 1993 and Gordon, 1997)

(from Clayton et al., 1991)

. .

SASW Equipment

Wave Types

Rayleigh Wave Properties

- In a homogeneous material, the speed of the Rayleigh wave is independent of its wavelength.
- In non-homogeneous materials, low-frequency (long wavelength) waves extend deeper than highfrequency (short wavelength) waves.
- This behavior is described as "dispersive" in seismological terms.
- A curve of velocity versus wavelength (or depth) is called a dispersion curve.

SASW Dispersion Curve

SASW Earth Model

Comparison of SASW and SPT results

Resistivity with SASW

SASW Applied to Concrete

- Concrete integrity testing
- Location of voids or defects in concrete
- Concrete thickness measurement

Detecting Voids Beneath Slabs

Ground Subsidence Resulting in Structural Damage

Area of greatest observed structural damage to walls and floor (dashed rectangle)

Mapping Subgrade Voids with SASW

Summary of SASW Applications

- More accurate IBC site classification
- Evaluation of concrete integrity
- Mapping subgrade voids
- Concrete thickness measurements

MASW Multi-channel Analysis of Surface Waves

- Uses surface waves like the SASW method
- SASW a single channel method with acquisition of shear wave velocities beneath a single point on the surface
- MASW a multi-channel method that can create a 2D cross-sectional view of subsurface shear wave velocities

MASW Field Equipment

Inversion Model Illustrating Soil and Rock Zones

MASW Applications

- IBC 2000 Site Specific Seismic Classification
- Rippability
- Depth to bedrock studies
- Detect presence of subsurface voids, caves, fractures,etc

Cross-Hole Sonic Logging (CSL)

Tests the integrity of newly placed concrete
Drilled shafts
Seal footings
Slurry walls

CSL Equipment

. First Arrival Times

Cross-Sectional CSL Tomography

In Conclusion

- Geophysical Methods Offer Means of Non-Destructive Testing
- Wide Variety of Tools and Applications
- Technology is Constantly Advancing

Thank You!

Co- Sponsored by

ATS International

Advanced Technical Services

Engineering Geology • Hydrogeology • Geophysics Computer Modeling • Visualization • GIS 107 Lester Street, Christiansburg VA 24073 <u>www.ats-intl.com</u> • 540-382-8867-Fax • 540-382-8861

